If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-20x+15=0
a = 6; b = -20; c = +15;
Δ = b2-4ac
Δ = -202-4·6·15
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{10}}{2*6}=\frac{20-2\sqrt{10}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{10}}{2*6}=\frac{20+2\sqrt{10}}{12} $
| 4-5(3x-2)+4=5-2x | | t/2+7=13 | | 6x/5=8/3 | | 40-5n=2n-44 | | 3x+9=2-6x | | 7x-3=- | | -10+20=n | | 3x/4-5/2=-x/2+1 | | 9^p=3^5 | | 3y=y65 | | 2(4s-3)-20=2(2s+3)+16 | | -3(x-3)=-x(4-4)-3 | | -4+3(2x+5)=5(2x-2) | | 6-9g=6-8g | | p/2+1=9 | | (2x+10)+5x+4x=470 | | 8q-25=3q+20 | | 2+10-7m=-6m+6 | | 5x/3-6=3+4x | | 7x+4=3 | | 5a-20=2a+16 | | 3x+2=5+2x/3 | | X⁴-7x²-8=0 | | ⅚x=2,5 | | 7(x–2)=4(x+2) | | 3w÷4=6 | | ((1-x)^(-0.7))=3.33 | | 10-4f=-34 | | 4x+25=x+25*4 | | 0.5x-3=-1.5x+7 | | (1-x)^(-0.7)=3.33 | | 2x/3-3x=-1-1/2 |